Collaborative topic regression for predicting topic-based social influence

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Celebrity Recommendation with Collaborative Social Topic Regression

Recently how to recommend celebrities to the public becomes an interesting problem on the social network websites, such as Twitter and Tencent Weibo. In this paper, we proposed a unified hierarchical Bayesian model to recommend celebrities to the general users. Specifically, we proposed to leverage both social network and descriptions of celebrities to improve the prediction ability and recomme...

متن کامل

Collaborative Topic Regression with Social Matrix Factorization for Recommendation Systems

Social network websites, such as Facebook, YouTube, Lastfm etc, have become a popular platform for users to connect with each other and share content or opinions. They provide rich information for us to study the influence of user’s social circle in their decision process. In this paper, we are interested in examining the effectiveness of social network information to predict the user’s ratings...

متن کامل

Collaborative Topic Regression with Social Regularization for Tag Recommendation

Recently, tag recommendation (TR) has become a very hot research topic in data mining and related areas. However, neither co-occurrence based methods which only use the item-tag matrix nor content based methods which only use the item content information can achieve satisfactory performance in real TR applications. Hence, how to effectively combine the item-tag matrix, item content information,...

متن کامل

Online Bayesian Collaborative Topic Regression

Collaborative Topic Regression (CTR) combines ideas of probabilistic matrix factorization (PMF) and topic modeling (e.g., LDA) for recommender systems, which has gained increasing successes in many applications. Despite enjoying many advantages, the existing CTR algorithms have some critical limitations. First of all, they are often designed to work in a batch learning manner, making them unsui...

متن کامل

TSIM: Topic-based Social Influence Measurement for Social Networks

Social science studies have acknowledged that the social influence of individuals is not identical. Social networks structure and shared text can reveal immense information about users, their interests, and topic-based influence. Although some studies have considered measuring user influence, less has been on measuring and estimating topic-based user influence. In this paper, we propose an appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2019

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-018-05776-w